

# **CloudTracker:** Accelerating Internet Content Distribution by Bridging Cloud Servers and Peer Swarms

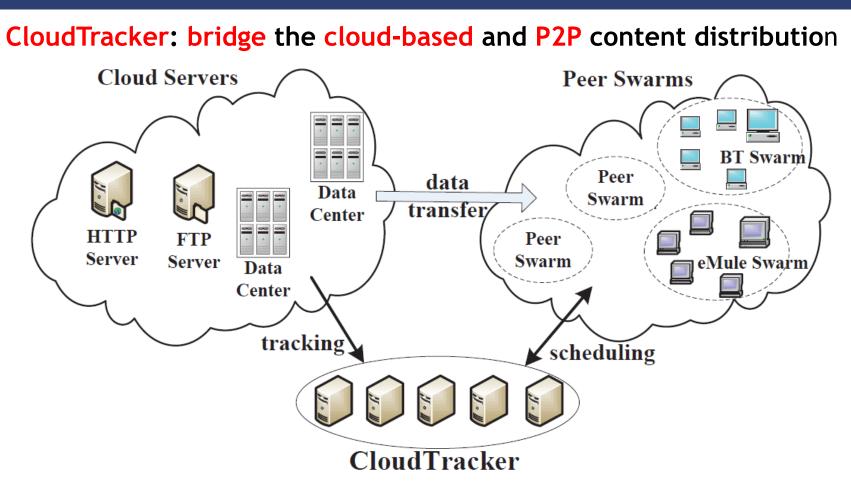
#### Abstract

Large-scale content distribution on today's Internet primarily operates in two modes: 1) **cloud-based** content distribution, which relies on "cloud servers" (e.g., servers in data centers or web hosting farms) that are located closer to the "core" Internet; 2) peer-to-peer content distribution that relies on a large number of user controlled end hosts that are located on the "edge" of the Internet and collectively form a peer swarm. Both modes have inherent advantages and disadvantages in terms of manageability, costs, scalability, and so forth. To bridge the two modes, especially to leverage the inherent scalability of peer swarms while circumventing its key limitations, in this paper we propose and implement a **cloud tracking service** named "CloudTracker" to accelerate peer-to-peer content distribution. CloudTracker continuously tracks downloadable files in cloud servers all over the Internet, indexes these files, and schedules peer swarms to retrieve them, so as to accelerate the data transfer of peers as well as to facilitate load-balancing among cloud servers. By using only 53 commodity servers, CloudTracker schedules around 5 million peers to retrieve data in petabytes from over 1.5 million cloud servers per day, and the average download rate of a peer is enhanced from 57 KBps to 158 KBps.

### **Motivation**

Content distribution on today's Internet operates in two modes

#### 1. Cloud-based content distribution


- $\succ$ Rely on "cloud servers" such as data centers, conventional web servers, and so forth
- ➤Locate closer to the "core" Internet
- Allow content providers better control Google amazon
- >Leverage the economy of scale
- $\succ$ Require significant upstart infrastructure costs
- >Continuing operation costs: storage and bandwidth

## 2. P2P (Peer-to-Peer) content distribution

- $\succ$ Rely on a large number of end hosts such as home PCs, laptops, or hand-held mobile devices
- >Locate on the "edge" of the Internet
- >Collectively form a *peer data swarm*
- ≻Little cost, highly scalable
- >Limited capacity per node
- >High dynamics (frequently join or leave)
- >Working efficiency can be poor and unpredictable

#### Both modes have their inherent advantages and disadvantages

|               | Cloud     | P2P  |
|---------------|-----------|------|
| Manageability | Good      | Poor |
| Costs         | Expensive | Low  |
| Scalability   | Low       | High |
| Stability     | High      | Poor |



1. Continuously tracks and indexes downloadable files in cloud servers >Allow end users to search and quickly find contents  $\succ$ Enable peer nodes that are interested in the same content to find each other and form a peer swarm

3. Facilitate load-balancing among cloud servers >By directing peer swarms to appropriate cloud servers > Avoid overloading a specific server

Light-weight Implementation

#### System Architecture

| <ul> <li>Cloud Crawler</li> <li>Discovering n</li> <li>Validation Ser</li> <li>Validate conto</li> <li>Data Schedule</li> </ul> | ew contents<br>vers<br>ents/indexes | Servers tra         | 4<br>Index<br>DB | Peer<br>Swarms<br>5<br>Data<br>Scheduler |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|------------------|------------------------------------------|
| Building block                                                                                                                  | Number of servers                   | Memory              | Storage          | Bandwidth                                |
| File Index DB                                                                                                                   | 15                                  | 2 GB / 8 GB / 16 GB | 120 GB           | 1 Gbps                                   |
| Cloud Crawler                                                                                                                   | 12                                  | 2 GB / 8 GB         | 150 GB           | 1 Gbps                                   |
| Validation Servers                                                                                                              | 12                                  | 2 GB / 8 GB         | 150 GB           | 1 Gbps                                   |
| Data Scheduler                                                                                                                  | 14                                  | 2 GB / 8 GB         | 150 GB           | 1 Gbps                                   |
|                                                                                                                                 |                                     |                     |                  |                                          |







Peer

You Tube

# Zhenhua Li (Ph.D. student), Yan Huang, Gang Liu, and Yafei Dai

## Peking University and Tencent Research

#### CloudTracker

2. Dynamically directs peer swarms to appropriate cloud servers > "Hungry swarms" do not have adequate download bandwidth

- >Directed to cloud servers to get extra data support
- >Thus achieve more efficient content distribution

>Address key limitations of P2P (instability and unpredictability)

CloudTracker does not upload any file to any peer by itself >We have implemented CloudTracker using only 53 commodity servers and it serves millions of peers well every day

Data Scheduling Strategy

#### Strives for a proper tradeoff between the user experience and cloud bandwidth burden

 $\succ$ On one hand, we want to enhance each peer's download rate to as high as possible by fully utilizing cloud bandwidth

- so that each peer can have his best user experience - and CloudTracker can attract more and more users

 $\succ$ On the other hand, the extra bandwidth burden posed on a cloud server directed by CloudTracker should be within a certain limit

- otherwise, the normal functionality of the cloud server may be interfered

Moreover, cloud providers may be reluctant to support CloudTracker if they cannot obtain extra benefit from extra bandwidth expense

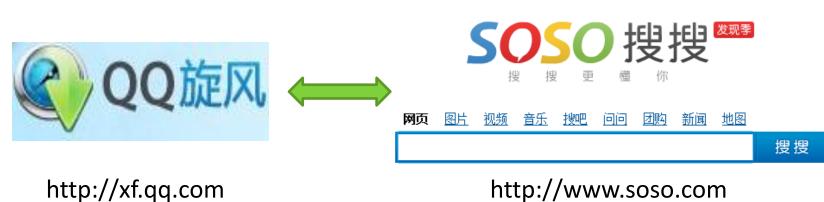
#### Data Scheduling Strategy utilizes three mechanisms:

1. Discriminative acceleration of peer swarms > Every user hopes to achieve his best user experience  $\succ$ We discover a user usually has his basic expectation for the download rate:  $d_{basic} = 30 \ KBps$ 

 $\succ$  Provide discriminative acceleration of peer swarms

- peer swarms are classified into three categories
- according to download rates and data supply-demand condition
- a) hungry swarms, b) potentially hungry swarms, and
- c) high-demand swarms ( $d_{high} = 100 \text{ KBps}$ )

 $\succ$  Different peer swarms correspond to different acceleration methods  $\rightarrow$  each user has a download rate at least above basic expectation


#### 2. Balanced utilization of cloud servers

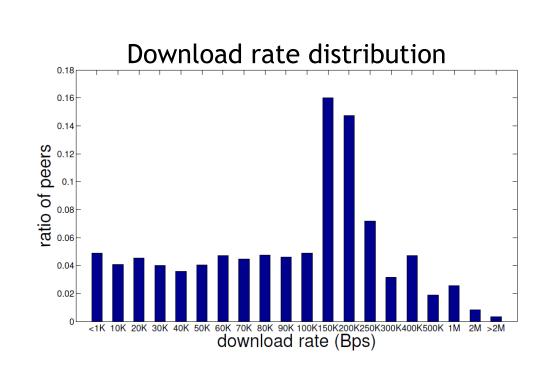
 $\succ$ Measurements indicate the original bandwidth utilization of a cloud server rarely exceeds 60%

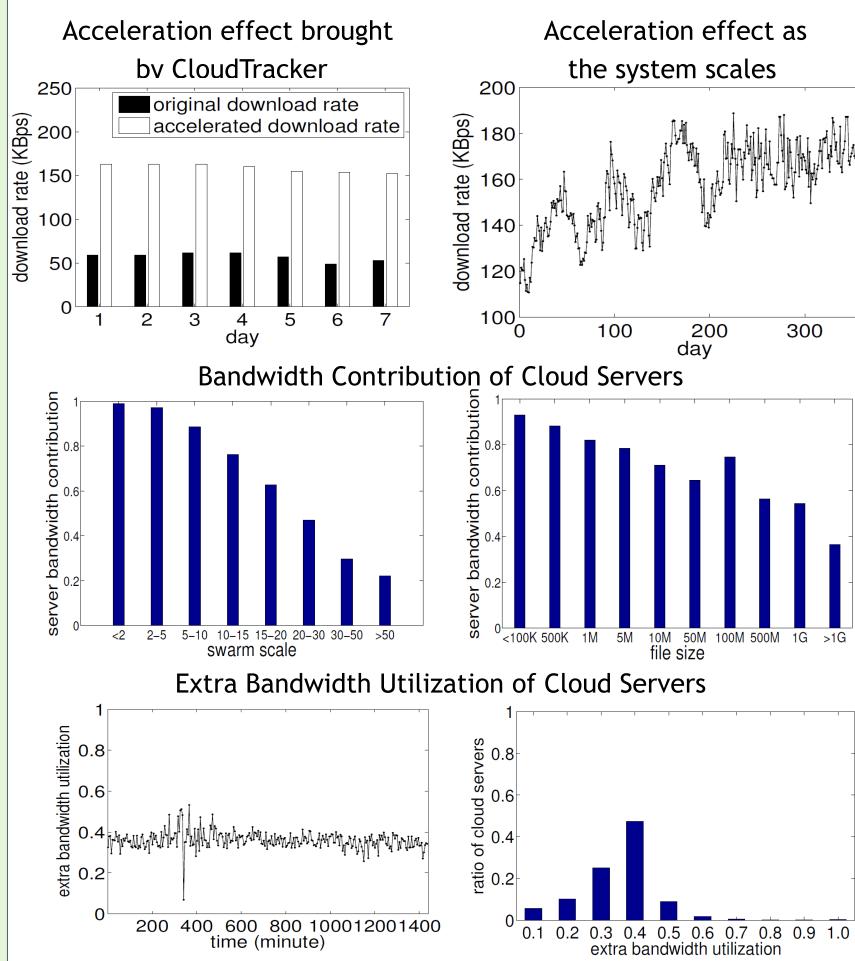
>Thus, extra bandwidth utilization (EBU) directed by CloudTracker had better be controlled within 40% (= 1 - 60%). >CloudTracker periodically collects the EBU of each cloud server. If the EBU of a server S exceeds 40%, CloudTracker will notify a part of the peers served by S to stop their data download from S.

#### 3. Benefit collaboration with cloud providers $\succ$ Two most important benefit metrics of a cloud provider:

a) page view (PV) and b) paid-to-click (PTC)  $\geq PV$ : if a cloud provider uploads a file to a peer swarm by the direction of CloudTracker, its PV will be increased in the web search engine "Soso" (the 4th biggest web search engine in China)  $\succ$ *PTC*: If a cloud provider has contributed a lot to CloudTracker, it will be rewarded by a nontrivial share of our PTC revenue




#### **Performance Evaluation**

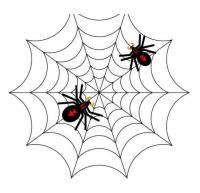

#### System Performance Summary

- CloudTracker has gained over 120 million accumulated users  $\succ$ Schedules 5 million peers to retrieve data in petabytes from over million cloud servers per day
- $\triangleright$  Peers' average download rate: 57 KBps  $\rightarrow$  158 KBps (177% increment
- >45% of the download rate is obtained from cloud servers
- $\succ$ Extra bandwidth utilization of cloud servers controlled within 40%

### Metrics

Acceleration effect on peer swarms > Bandwidth contribution of cloud servers >Extra bandwidth utilization of cloud servers








 $\succ$ Current system parameters are statically configured based on comprehensive measurements, although work fine, may not well adapt to changes of network environments.  $\succ$ How to design proper mechanisms to automatically collect/analyze

measurements and thus dynamically tune system parameters to match the new situations.

More specific and powerful crawler >Filtering web search engine results at present >Slow, weak, and incomplete  $\succ$ Specific crawler focusing on cloud tracking



腾讯研究院

### **Related Work**

#### BitTorrent Trackers

>Only tracks the peers in one swarm

Dynamically tuning system parameters

> Does not care about the data transfer status of peers

>Only supports a single protocol: bittorrent.

#### **P2SP Systems**

≻C. Wu, B. Li, and S. Zhao. "On Dynamic Server Provisioning in Multichannel P2P Live Streaming," To appear in TON. ≻Y. Sun, F. Liu, et al. "Fs2you: Peer-assisted semi-persistent online storage at a large scale," In IEEE INFOCOM, 2009. ≻F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li. "Novasky: Cinematic-Quality VoD in a P2P Storage Cloud," In IEEE INFOCOM, 2011. ≻.H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li. "Design and deployment of a hybrid CDN-P2P system for live video streaming: experiences with LiveSky," In ACM Multimedia, 2009.

Thunder (larger and older): <a href="http://www.xunlei.com">http://www.xunlei.com</a>.



Web browsers using cloud tracking







Peking University (Beijing, Shenzhen) is one of the oldest and best comprehensive universities in China, which is founded in 1898.

**Tencent** (Shenzhen, Shanghai, Beijing, Chengdu) is one of the biggest Internet companies in China, whose business involves IM, Web portal, (Micro)Blog, Video Streaming, etc.

Zhenhua Li, *Peking University* <u>lzh@net.pku.edu.cn</u> Yan Huang, Tencent Research galehuang@tencent.com Gang Liu, Tencent Research <a href="mailto:sinbadliu@tencent.com">sinbadliu@tencent.com</a> Yafei Dai, Peking University <u>dyf@net.pku.edu.cn</u>